给你一个存在桥的无向连通图,每次增加一条边,问每次增加边之后还剩多少个桥。
朴素的办法就是每输入一次tarjan求一次桥的个数,肯定会tle;
正确的做发是,首先求出改图的桥的数量,在tarjan的过程中里用并查集把不是桥的边缩为一点,然后得到一棵树,每加入一条边,就肯定会形成一个环,,然后删除环中石桥的边,最后得出总的桥的数量。删除的过程就是检查是否石桥是就有cut--;
View Code
#include#include #include #include #define maxn 100010 using namespace std; int low[maxn],dfn[maxn],father[maxn],f[maxn]; int index,n,m,q,cut; vector g[maxn]; void init(int nn) { for (int i = 0; i <= n+1; ++i) { g[i].clear(); low[i] = dfn[i] = father[i] = 0; f[i] = i; } index = cut = 0; } int find(int x) { if (f[x] != x) f[x] = find(f[x]); return f[x]; } int Union(int x,int y) { x = find(x); y = find(y); if (x != y) { f[y] = x; return 1; } else return 0; } void tarjan(int i,int pre) { int j,k; low[i] = dfn[i] = ++index; for (k = 0; k < g[i].size(); ++k) { j = g[i][k]; if (!dfn[j]) { tarjan(j,i); low[i] = min(low[i],low[j]); father[j] = i;//记录每个节点的父亲,方便后面的环中的查找 if (low[j] > dfn[i])//记录桥数 cut++; else Union(i,j);//把不是桥的缩为一点 } else if (j != pre)//这里要注意不能是i的父亲,反之low[i] = low[father[i]]了; { low[i] = min(low[i],dfn[j]); } } } void lca(int u,int v) { //在环中找桥的过程 while (u != v) { while (dfn[u] >= dfn[v] && u != v) { if (Union(u,father[u])) cut--; u = father[u]; } while (dfn[v] >= dfn[u] && u != v) { if (Union(v,father[v])) cut--; v = father[v]; } } } int main() { //freopen("d.txt","r",stdin); int i,x,y,cas = 1; while (scanf("%d%d",&n,&m)) { if (!n && !m) break; printf("Case %d:\n",cas++); init(n); for (i = 0; i < m; ++i) { scanf("%d%d",&x,&y); g[x].push_back(y); g[y].push_back(x); } /*for (i = 1; i <= n; ++i) { for (int j = 0; j < g[i].size(); ++j) printf("%d ",g[i][j]); puts(" "); }*/ tarjan(1,-1); //printf(">>>%d\n",cut); cin>>q; while (q--) { cin>>x>>y; lca(x,y); printf("%d\n",cut); } printf("\n"); } return 0; }